Modeling and Optimization of Trajectory-based Combustion Control

Abhinav Tripathi Professor Zongxuan Sun

Department of Mechanical Engineering University of Minnesota

Abhinav Tripathi, Prof Zongxuan Sun

UNIVERSITY OF MINNESOTA Driven to Discoversm

Presentation Outline

- Motivation, Background and Objective
- Trajectory based Combustion Control
 - Previous Work: Modeling and Optimization Framework
- Approach for experimental validation
 - A novel instrument Controlled Trajectory Rapid Compression and Expansion Machine (CT-RCEM)
 - Unique capabilities of CT-RCEM
 - Experimental characterization of CT-RCEM
- Conclusions

2

Background – Advanced Combustion Modes

Global trend - tighter regulations for fuel efficiency and emissions

Low Temperature Combustion (LTC) modes are kinetically modulated

- ✓ Extremely fuel-lean operation leading to *high fuel efficiency*
- ✓ High CR operation and faster heat release leading to *higher fuel efficiency*
- ✓ Low peak temperature leading to *lower NOx*

Background – HCCI Combustion

Challenge - Combustion phasing

Control of ignition timing to achieve continuous operation is extremely difficult in conventional ICE

Existing control methods include

- Exhaust gas recirculation (EGR)
- Varying valve timing and
- Charge stratification

Control input is provided at a single time instant during the cycle

4

Background – FPE at UMN

- Opposed Piston Opposed Cylinder Engine
- No mechanical crankshaft
- Direct Fuel Injection

✓ Variable compression ratio
• Advanced combustion strategy
• Multi-fuel operation
✓ Reduced frictional losses
✓ Faster response time

Background – FPE at UMN

Abhinav Tripathi, Prof Zongxuan Sun

Presentation Outline

- Motivation, Background and Objective
- Trajectory-based HCCI Combustion Control
 - Previous Work: Modeling and Optimization Framework
- Approach for experimental validation
 - A novel instrument Controlled Trajectory Rapid Compression and Expansion Machine (CT-RCEM)
 - Unique capabilities of CT-RCEM
 - Experimental characterization of CT-RCEM
- Conclusions

What is Trajectory-based Combustion Control

Basic Framework - Trajectory-based Combustion Control

- Inner Loop: piston motion control virtual crankshaft
- Outer Loop: Trajectory-based combustion control

Find piston trajectory which minimizes emissions & maximizes work output

Presentation Outline

- Motivation, Background and Objective
- Trajectory-based HCCI Combustion Control
 - Previous Work: Modeling and Optimization Framework
- Approach for experimental validation
 - A novel instrument Controlled Trajectory Rapid Compression and Expansion Machine (CT-RCEM)
 - Unique capabilities of CT-RCEM
 - Experimental characterization of CT-RCEM
- Conclusions

Controlled Trajectory Rapid Compression and Expansion Machine

CT-RCEM is new instrument that uses fluid power to enable unique experimental capabilities for fundamental and applied combustion research

- Developed at University of Minnesota under 3 year NSF-MRI Grant
- High throughput and extreme operational flexibility
- Ability to control the piston trajectory inside the combustion chamber

Setup and Specifications

Maximum Combustion Pressure	250 bar
Minimum Compression Time	20 ms
Maximum Compression Ratio	25
Combustion Chamber Bore	50.8 mm
Maximum piston travel	192 mm
TDC clearance	8 mm
Hydraulic Working Pressure	350 bar
Hydraulic Piston Bore	40 mm
Mass of Piston Assembly	1.7 kg

Key requirement: High-force and high-speed actuation

Repeatability of CT-RCEM

Compression ratio 16.7

Stroke	131 mm
Compression time	20 ms
Peak velocity	12.5 m/s
Peak tracking error	0.6 mm
Average velocity	7 m/s
Peak flow rate	920 l/min
Peak instantaneous power	0.4 MW

Maximum deviation of individual pressure profiles from ensemble average of repetitions \approx **0.2 bar**

Mimicking Engine Operation in CT-RCEM

- Investigating partial ignition of DME for engine-like sinusoidal trajectory
- Fuel mixture DME:O₂:N₂ = 1:4:40 (lean and diluted with extra nitrogen)
- Stroke: 121 mm, CR: 15.5, RPM: 1500
- Creviced piston to trap boundary layer

Producing different FPE Trajectories

Unique ability to electronically change CR, speed and shape of piston trajectory allows reproduction of any FPE trajectory

Further development is underway to demonstrate the intake and exhaust stroke, and spark ignition

CT-RCEM for Engine Applications – FPE and Conventional ICE

- Scope to incorporate multi-cycle testing
- Flexibility to accurately pre-set initial conditions (charge pressure and temperature)
- Flexibility to accommodate in-situ or ex-situ species diagnostics through optical (chemiluminescence, LIF) or gas sampling methods (GCMS)
- Replaceable head design to incorporate direct injection, spark plug, or intake manifold as required
- Uniquely suited for investigating turbocharged combustion modes
- Replaceable piston crown to enable evaluation of piston crown geometries
- Flow field and turbulence studies by using various piston designs, changing piston trajectories or even including an intake stroke

Optical Diagnostics – Accessing Chemical Kinetics Information

30 ms compression

20 ms compression

- Optical measurement work by capturing the fluorescence of intermediate species
- Chemiluminescence or Laser induced fluorescence
- Measurement of intermediate species such as OH*, CH*, CH2*
- Comparing image intensities gives a quantitative estimate of species concentration

200

150

100

30 ms 20 ms

Abhinav Tripathi, Prof Zongxuan Sun

Conclusions

- A controlled trajectory rapid compression and expansion machine has been developed at UMN for addressing the research needs of fundamental and applied combustion investigation
- The exceptional flexibility and the novel capabilities have been demonstrated
- CT-RCEM offers a unique opportunity to experimentally validate the concept and framework of trajectory based combustion control
- We are looking for opportunities to collaborate to further develop and demonstrate the capabilities of the CT-RCEM.

Backup Slides

Abhinav Tripathi, Prof Zongxuan Sun

Operational Flexibility of CT-RCEM

'Floating' BDC allows the stroke to be changed electronically

Inert mixture testing

Ensemble average for four repetitions of compression of Air-CO₂ mixture

- Compression ratio: 12.4, 14.2, 15.5, 16.7
- Compression time: 20 ms & 30 ms

Enables calibration of heat transfer models using experimental data over a wide range of operating conditions

Uniquely suited for experimental validation of trajectory based combustion control

UNIVERSITY OF MINNESOTA

Driven to Discover®

Abhinav Tripathi, Prof Zongxuan Sun

Simulating FPE Operation

- Piston position and actual pressure shown here is measured data
- Adiabatic pressure, isothermal pressure, and temperature traces are estimated

